
BOOKSWAP APPLICATION 
PROJECT REPORT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Author 

Ivan Yaremko 

C00239239 

 

Supervisor 

Dr Chris Staff   

   

Submission date 

25/04/2022 

  



1 
 

1 CONTENTS 

2 Introduction .......................................................................................................... 3 

3 Description of submitted project........................................................................... 4 

3.1 Technologies ................................................................................................. 4 

3.1.1 .NET with C# .......................................................................................... 4 

3.1.2 React with TypeScript ............................................................................. 5 

3.1.3 ISBNdb API ............................................................................................ 5 

3.1.4 Cloudinary .............................................................................................. 5 

3.2 Application Architecture ................................................................................ 6 

3.2.1 Clean Architecture .................................................................................. 6 

3.2.2 CQRS ..................................................................................................... 7 

3.3 Screenshots .................................................................................................. 8 

3.3.1 Home screen .......................................................................................... 8 

3.3.2 Login screen ........................................................................................... 8 

3.3.3 Register screen ...................................................................................... 9 

3.3.4 Market place dashboard screen ............................................................. 9 

3.3.5 Search book screen .............................................................................. 10 

3.3.6 View book details screen ...................................................................... 10 

3.3.7 My Swaps dashboard screen ............................................................... 11 

3.3.8 View swap request screen .................................................................... 11 

3.3.9 Swap history dashboard ....................................................................... 12 

3.3.10 Chat with member screen ..................................................................... 12 

3.3.11 Create book – get book details screen ................................................. 13 

3.3.12 Create book – view details of new book to create ................................ 13 

3.3.13 Profile dashboard ................................................................................. 14 

3.3.14 View owned books screen .................................................................... 14 

3.3.15 Update owned book details screen ....................................................... 15 

3.3.16 Profile photos screen ............................................................................ 16 

3.3.17 Add photo to profile screen ................................................................... 16 

3.4 Entity Relationship Diagram ........................................................................ 17 

4 Adherence to the Functional Specification ........................................................ 18 

4.1 Adding books usability ................................................................................ 18 

4.2 Search book usability .................................................................................. 19 

5 Learning Outcomes ........................................................................................... 20 



2 
 

5.1 Technical learning ....................................................................................... 20 

5.2 Issues .......................................................................................................... 20 

6 Review of Project .............................................................................................. 21 

6.1 Achieved ..................................................................................................... 21 

6.2 Not achieved ............................................................................................... 21 

7 References ........................................................................................................ 22 

8 Plagiarism declaration ....................................................................................... 23 

 

  



3 
 

2 INTRODUCTION 

The purpose of this document is to discuss my personal experience while developing 

BookSwap. The document describes the content of the submitted project, illustrates 

the UI elements, and discusses what elements of the project were achieved and not 

achieved.   



4 
 

3 DESCRIPTION OF SUBMITTED PROJECT 

BookSwap is a web application developed for the second-hand book market. The 

application facilitates a way for members to trade books with each other. This allows 

for books to be recycled and reduce the cost of pleasure reading. 

Members of the application can: 

- Upload books that they intend to trade. 
- Search the marketplace for books. 
- Request to swap books with other members. 
- Update their profiles 

 

The application will be able to: 

- Register and authenticate members. 
- Allow members to add books by using an external ISBN API [1]. 
- Allow members to add photos to their profiles by using an external Cloudinary 

[2]  API storage. 
- Allow members to search the marketplace by querying the backend database. 
- Facilitated swapping books. 

3.1 TECHNOLOGIES 

3.1.1 .NET with C# 

This project uses the .NET framework [3] to develop the backend system of the 

application. The application utilises .NET’s object-oriented programming environment 

by using C#. BookSwap uses five main libraries for development: 

- .NET Core.  

This library contains the Inversion of Control container for automatic 

dependency injection. 

- Web API. 

This library is used for building HTTP services such as API Controllers which 

allows clients to ask for information from the application. 

- Entity. 

Entity is used for Object-Relational Mapping, this allows the use of domain 

classes without the need of configuring the schema for database tables and 

columns.  

- Core Identity. 

This library supports user authentication by managing credentials such as 

email, passwords, usernames, and tokens.   

- SignalR. 

SignalR allows the creation of Hubs where clients can connect to and gain the 

ability to send messages in real time via web sockets. 

 

 

 



5 
 

3.1.2 React with TypeScript 

For the client side of BookSwap, the project uses React [4] and TypeScript. React is 

an open-source library that is used for building user interfaces (UI) for single-page 

applications (SPA). It is the view layer for web and mobile applications. 

React requires additional libraries to be integrated into the development. These 

libraries are: 

- Axios.  

Axios [5] is an HTTP client library that allows clients to make requests to a 

given endpoint. Axios is promise-based, which gives the ability to use 

JavaScript’s async and await for more readable asynchronous code. Axios 

can also intercept and cancel requests. 

- MobX. 

MobX [6] is an open-source state management tool. 

- React Router 

React Router [7] ] is a standard library for routing in React. React Router 

enables navigation among components in a React Application, it also allows 

changing the browser URL, and keeps the UI in sync with the URL. React 

Router enables the display of multiple views in a Single Page Application.  

- React SignalR 

React SignalR [8] features hooks to connect events to a component. It 

manages connection to Hubs via web sockets and allows clients to message 

each other through the hub in real time. 

3.1.3 ISBNdb API 

ISBNdb [9] gathers data from hundreds of libraries, publishers, and merchants to 

compile a collection of unique book data searchable by ISBN. ISBNdb is a paid 

service but they have an academic / non-profit discount for €5 a month. BookSwap 

uses this API to allow members to retrieve details of the books they are entering into 

the market. 

3.1.4 Cloudinary 

Cloudinary [10] is an API service that allows the storage of media such as images 

and videos. BookSwap uses Cloudinary for members profile images. Instead of 

storing the files in the application database, BookSwap stores the files in Cloudinary, 

and in tern Cloudinary provides a public URL to view the image, this URL is stored in 

the applications database.  



6 
 

3.2 APPLICATION ARCHITECTURE 
The goal of using an application architecture is to achieve separation of concerns 

and achieve a code base that is modular, maintainable, and scalable. BookSwap 

achieves this by using Clean Architecture and the Command Query Responsibility 

Segregation pattern (CQRS). 

3.2.1 Clean Architecture 

Clean architecture was created by Robert C. Martin [11]. The golden rule that makes 

this architecture work is the dependency rule [11]:  

“Source code dependencies must point only inward, toward higher-level policies.” 

The core of the system should not be changed if the framework or UI changes. This 

protects the core of the system and makes the external dependencies completely 

replaceable. 

 

Figure 1 BookSwap implementation of Clean Architecture 

The way BookSwap implements this architecture is demonstrated in Figure 1. 

BookSwap follows the inner dependency rule and isolates different application layers 

into their own responsibilities. 

- API 

The API layer is responsible for communicating with HTTP requests. When a 

HTTP request hits an API endpoints, the API delegates the business logic to 

the application layer.  



7 
 

- Application 

The application layer is responsible for the business logic of the application. 

This layer uses the necessary services, such as a DataContext in the 

persistence layer, via constructor injections to write the code for a specific 

need.  

- Persistence 

The persistence layers only responsibility is to communicate with the data 

store. 

- Domain 

The domain is used to store classes which are used as a reference of 

database creation, design, and schema. 

3.2.2 CQRS 

The Command and Query Responsibility Segregation [12] (CQRS) pattern is used to 

separate the create/update and read operations for a data store. Create, update, and 

delete operations are known as commands in this pattern and reads are queries. 

CQRS separates the commands and queries, commands do something with the 

database and queries read data from the database.  

BokSwap implements this pattern by using a library called MediatR [13]. This library 

allows process managing and supports request/response, command, and queries. 

To demonstrate this flow of control, when the API receives a HTTP request: 

- The API controller will send this request via the mediator send method. 

- The request could be either a query (Read) or a command (Write). 

- The mediator will send this request to the mediator handler. 

- The handler will handle the use case and apply the necessary code and logic. 

- The handler will return to the API controller with the necessary information. 

- The API controller will then return the information through a HTTP response to 

the client. 

 

 



8 
 

3.3 SCREENSHOTS 

3.3.1 Home screen 

 

Figure 2 Home screen 

In this screen the user is greeted with the home screen of BookSwap. The user then 

has two options, Logging in or Registering. 

 

3.3.2 Login screen 

 

Figure 3 Login screen 

In this screen a user can log into the application by providing their email and 

password. 

 



9 
 

3.3.3 Register screen 

 

Figure 4 Register screen 

In this screen a user may register with the BookSwap application by providing the 

necessary details. 

3.3.4 Market place dashboard screen 

 

Figure 5 Market place dashboard screen 

When a user is logged in, they are redirected into this screen. This screen shows the 

market dashboard. 



10 
 

3.3.5 Search book screen 

 

Figure 6 Search book screen 

In the market dashboard a user may look for a book in the selected county. 

3.3.6 View book details screen  

 

Figure 7 View book details screen 

In this screen a member can see a detailed view of a book they selected from either 

the marketplace or a user’s profile. They can also request to swap this book with the 

owner of the book. 



11 
 

3.3.7 My Swaps dashboard screen 

 

Figure 8 My Swaps dashboard screen 

This screen is the dashboard a member sees to review their sways. On the left of the 

screen the member may review the swaps the requested and on the right swaps 

being requested from them. 

3.3.8 View swap request screen 

 

Figure 9 View swap request screen 

This screen is accessed by selecting a swap that is being requested of the logged in 

user. The member may select a book to swap from the list provided or cancel the 

swap. 



12 
 

3.3.9 Swap history dashboard 

 

Figure 10 Swap history dashboard screen 

In this screen a member may see their swap history.  

3.3.10 Chat with member screen 

 

Figure 11 Chat with member screen 

This screen is accessed by clicking on one of the swaps from the history dashboard. 

In this screen both members of the swap may message each other. 

 

 



13 
 

3.3.11 Create book – get book details screen 

 

Figure 12 Get book details screen 

This screen is used when a member wishes to add a book to the marketplace. 

 

3.3.12 Create book – view details of new book to create 

 

Figure 13 View details of book to create 

This screen is accessed once the member has entered a valid ISBN, the details of 

the book is displayed in this form.  



14 
 

3.3.13 Profile dashboard 

 

Figure 14 Profile dashboard screen 

This screen is the profile dashboard screen.  

 

3.3.14 View owned books screen 

 

Figure 15 View books owned screen 

A member may look at their books they have on offer in the marketplace. 



15 
 

3.3.15 Update owned book details screen 

 

Figure 16 Update book screen 

A member may update the details of a book they own. This screen is accessed via 

the member’s profile dashboard. 

 

 

 



16 
 

3.3.16 Profile photos screen 

 

Figure 17 Profile photos screen 

In this screen a member may delete a photo or set a photo as their main photo. 

3.3.17 Add photo to profile screen 

 

Figure 18 Add photo screen 

In this screen a member may add a photo to their profile.  

 



17 
 

3.4 ENTITY RELATIONSHIP DIAGRAM 

 

Figure 19 BookSwap ER Diagram 

  



18 
 

4 ADHERENCE TO THE FUNCTIONAL SPECIFICATION 

4.1 ADDING BOOKS USABILITY 

 

Figure 20 Error display 

Figure 20 illustrates the errors shown when a member is trying to add a book to the 

marketplace. The application displays the required fields required to be filled in. 

  



19 
 

4.2 SEARCH BOOK USABILITY 

 

Figure 21 Search book 

Figure 21 shows how sensitive the search feature is. The search text requires to be 

exact; it does not account for lower case letters or auto completeness. 

 

 

 

  



20 
 

5 LEARNING OUTCOMES 

5.1 TECHNICAL LEARNING 
I have improved with my programming knowledge by following an architecture for my 

code base and implementing a pattern. Working on this final year project has 

improved my full-stack development experience. I have a much broader context now 

on the different systems it takes to develop to release a product. 

5.2 ISSUES 
The biggest issue I had with this project is time and project management. Overall, I 

did not implement my full original vision for this project. Due to personal issues, I 

could not put in the hours required in developing this project during term 2.  

It was hard to keep a consistent schedule week to week. Especially when I had time 

and mental capacity to develop, I had to first spend time going back through all my 

code to bring back my memory and what I was doing.   

If I was to redo this project from the start, I would focus on developing the main core 

functionality of the application. I would particularly focus on failing first trying to 

develop and figure out the technical requirements for the main functionality. It would 

have been easier to build additional functionality around the core functionality.  



21 
 

6 REVIEW OF PROJECT 

6.1 ACHIEVED 
This project has achieved nearly all the core functionality features: 

- Authenticate 
The ability to register and login with the application, as well as using a secure 

JSON Web Token so that authenticate users may communicate with the 

backend system. 

- Search 
Members may search for books in the marketplace, either through the search 

bar or through using the provided list. 

 

- CRUD Books 

Members have the ability to create, read, update, and delete books. 

 

- CRUD Profile 

Members have the ability to update their profiles and be able to set images 

alongside their profile. 

 

- Swap books 

The application provides the functionality for members to request a book 

through the marketplace, have the owner of the requested book review the 

request. The owner can decide whether to swap their book with one of the 

books from the requestor or cancel the swap request. 

 

- Chat  

Currently the chat feature is not working as intended, but the UI elements 

exists along with the backend logic. The configuration needs to be correctly 

implemented for the members to be able to message each other. 

6.2 NOT ACHIEVED 
The following non-core functionalities were not achieved while developing this 

project: 

- Wish list. Ability for members to add books they wish to swap 

- Novel recommendation. A machine learning algorithm that recommends 

books that member would like. 

- Google map. A map integration into the chat system. 

- Member rating. A member scoring system to show case the trust level of a 

member. 

  



22 
 

7 REFERENCES 

 

[1] ISBNdb API Documentation v2 | ISBNdb. (2021, August 18). Isbndb.Com. 

Retrieved April 25, 2022, from https://isbndb.com/apidocs/v2 

[2] Cloudinary.com. 2022. Cloudinary Image & Video Management - Documentation 

Home | Cloudinary. [online] Available at: <https://cloudinary.com/documentation> 

[Accessed 25 April 2022]. 

[3] G. (2021, September 15). Overview of .NET Framework - .NET Framework. 

Microsoft Docs. https://docs.microsoft.com/en-us/dotnet/framework/get-

started/overview 

[4] Components and Props –. (2021, June 2). React. 

https://reactjs.org/docs/components-and-props.html 

[5] npm: axios. (2021, October 25). Npm. https://www.npmjs.com/package/axios 

[6] MobX: Ten minute introduction to MobX and React. (2021, October 5). 

Mobx.Js.Org. Retrieved Accessed 25 April 2022, from https://mobx.js.org/getting-

started 

[7] React Router: Declarative Routing for React. (2021, July 21). 

ReactRouterWebsite. Retrieved Accessed 25 April 2022, from 

https://reactrouter.com/ 

[8] npm. 2022. react-signalr. [online] Available at: 

<https://www.npmjs.com/package/react-signalr> [Accessed 25 April 2022]. 

[9] ISBNdb API Documentation v2 | ISBNdb. (2021, August 18). Isbndb.Com. 

Retrieved 25 April 2022, from https://isbndb.com/apidocs/v2 

[10] Cloudinary.com. 2022. Cloudinary Image & Video Management - 

Documentation Home | Cloudinary. [online] Available at: 

<https://cloudinary.com/documentation> [Accessed 25 April 2022]. 

[11] Martin, R. (2017). Clean Architecture: A Craftsman’s Guide to Software 

Structure and Design (Robert C. Martin Series) (1st ed.). Pearson. 

[12] Narumoto, M. N. (2021, June 14). What is the CQRS pattern? - Azure 

Architecture Center. Microsoft Docs. https://docs.microsoft.com/en-

us/azure/architecture/patterns/cqrs 

[13] Bogard, J., 2021. GitHub - jbogard/MediatR: Simple, unambitious mediator 

implementation in .NET. [online] GitHub. Available at: 

<https://github.com/jbogard/MediatR> [Accessed 25 April 2022]. 

 

 

 

https://isbndb.com/apidocs/v2
https://docs.microsoft.com/en-us/dotnet/framework/get-started/overview
https://docs.microsoft.com/en-us/dotnet/framework/get-started/overview
https://reactjs.org/docs/components-and-props.html
https://www.npmjs.com/package/axios
https://mobx.js.org/getting-started
https://mobx.js.org/getting-started
https://reactrouter.com/
https://docs.microsoft.com/en-us/azure/architecture/patterns/cqrs
https://docs.microsoft.com/en-us/azure/architecture/patterns/cqrs


23 
 

8 PLAGIARISM DECLARATION 

 

 

 
 
 
 
 

 

*I declare that all material in this submission e.g. thesis/essay/project/assignment is entirely 

my/our own work except where duly acknowledged. 

 

*I have cited the sources of all quotations, paraphrases, summaries of information, tables, 

diagrams or other material; including software and other electronic media in which 

intellectual property rights may reside. 

 

*I have provided a complete bibliography of all works and sources used in the preparation 

of this submission. 

 

*I understand that failure to comply with the Institute’s regulations governing plagiarism 

constitutes a serious offence. 

 

 

Student Name (Printed) : Ivan Yaremko                

Student Number : C00239239 

Signature: 

Recoverable Signature

X
Ivan Yaremko

Signed by: 6c456de4-a264-4906-bbdd-cd8e10592da5  


